Multiple Ordinal Regression by Maximizing the Sum of Margins
نویسندگان
چکیده
منابع مشابه
Maximizing upgrading and downgrading margins for ordinal regression
In ordinal regression, a score function and threshold values are sought to classify a set of objects into a set of ranked classes. Classifying an individual in a class with higher (respectively lower) rank than its actual rank is called an upgrading (respectively downgrading) error. Since upgrading and downgrading errors may not have the same importance, they should be considered as two differe...
متن کاملSelecting Local Models in Multiple Regression by Maximizing Power
This paper considers multiple regression procedures for analyzing the relationship between a response variable and a vector of d covariates in a nonparametric setting where both tuning parameters and the number of covariates need to be selected. We introduce an approach which handles the dilemma that with high dimensional data the sparsity of data in regions of the sample space makes estimation...
متن کاملMultiple Alignment of RNAs by Maximizing the Sum of the Matching Probability of Stem Fragments
1 Department of Computational Biology, Graduate School of Frontier Science, University of Tokyo, CB04 Kiban-tou 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan 2 Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology 3 Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, J...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولTuning membership functions of kernel fuzzy classifiers by maximizing margins
We propose two methods for tuning membership functions of a kernel fuzzy classifier based on the idea of SVM (support vector machine) training. We assume that in a kernel fuzzy classifier a fuzzy rule is defined for each class in the feature space. In the first method, we tune the slopes of the membership functions at the same time so that the margin between classes is maximized under the const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2016
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2015.2477321